
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=teis20

Enterprise Information Systems

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/teis20

Clustering-based software modularisation models
for resource management in enterprise systems

Jiahua Li & Ali Yamini

To cite this article: Jiahua Li & Ali Yamini (2020): Clustering-based software modularisation
models for resource management in enterprise systems, Enterprise Information Systems, DOI:
10.1080/17517575.2020.1830307

To link to this article: https://doi.org/10.1080/17517575.2020.1830307

Published online: 06 Oct 2020.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=teis20
https://www.tandfonline.com/loi/teis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17517575.2020.1830307
https://doi.org/10.1080/17517575.2020.1830307
https://www.tandfonline.com/action/authorSubmission?journalCode=teis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=teis20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17517575.2020.1830307
https://www.tandfonline.com/doi/mlt/10.1080/17517575.2020.1830307
http://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2020.1830307&domain=pdf&date_stamp=2020-10-06
http://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2020.1830307&domain=pdf&date_stamp=2020-10-06

Clustering-based software modularisation models for
resource management in enterprise systems
Jiahua Li a and Ali Yamini b

aSchool of Information Engineering, Guangzhou Vocational and Technical University of Science and
Technology, Guangzhou, Guangdong 510550, China; bDepartment of Computer Engineering, Science and
Research Branch, Islamic Azad University, Tehran, Iran

ABSTRACT
Software module clustering approaches can provide a better under-
standing of large and complex software systems through decom-
posing the enterprise resources into classified modules which are
smaller, and therefore easier-to-handle. As the dimensions and
complexity of enterprise software projects are continuously increas-
ing, handling a large software project is going to be more challen-
ging. The challenge would be more complex if the experienced
personnel is considered as well. Therefore, appropriate automatic
software modularization clustering methods are required in
resource management. This paper provides a Systematic
Literature Review (SLR) on the software modularization clustering
models. We studied a wide range of papers from 2001 to 2020 to
provide our SLR. Also, a technical taxonomy is presented to classify
the existing papers on software modularization clustering models
and algorithms. The software module clustering methods are cate-
gorized into three main classes. Finally, new challenges and forth-
coming issues of software modularization clustering models are
presented.

ARTICLE HISTORY
Received 7 June 2020
Accepted 26 September 2020

KEYWORDS
Data mining; software
modularisation; clustering
method; resource
management; enterprise
systems

1. Introduction

In data mining techniques, clustering as an unsupervised method is considered as one
of the important approaches in software development (Xie et al. 2009). The main
purpose of the software module clustering process is to divide a large software system
into its subsystems and provide an abstract model of software complex architecture.
Having an articulated architecture, software developers could have a better analysis of
the software modularisation. An enterprise software system should be clustered in
such a way that the relationship between modules (Czekster et al. 2019), which are in
the same cluster (intra-connections), is maximised and the relationship between the
two clusters (inter-connections) is minimal. In other words, in a clustering process, the
entities that are more similar to each other are put in the same cluster (Rathore and
Kumar 2019).

CONTACT Jiahua Li huahua888219@163.com School of Information Engineering, Guangzhou Vocational and
Technical University of Science and Technology, Guangzhou, Guangdong 510550, China

ENTERPRISE INFORMATION SYSTEMS
https://doi.org/10.1080/17517575.2020.1830307

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-0222-0619
http://orcid.org/0000-0003-0643-4048
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2020.1830307&domain=pdf&date_stamp=2020-10-06

The issue of turning software modules into bigger structures same as container shaped
structures is called software module clustering. To split a software system into various
modules, the Modularisation method comes to assist. The resulted modules from mod-
ularisation are discrete, independent, and also, can handle the assigned tasks (Venkatesan
and Sridhar 2019). Generated modules can be utilised as a building base for the whole
software and developers intend to create them to be able to be run and/or compiled
individually while depending on themselves. Since there are lots of other interests in
software modularisation, this design comes with a rule called ‘divide and conquer’ which
is a problem-solving strategy. Scaled software systems can include thousands of modules
and there is a need to organise these modules to assist future developments in finding the
target module that belongs to a certain task (Spijkman et al. 2019). To achieve this goal,
modules will be separated into clusters that if done properly, can assist in recognising
responsible modules for each functionality, facilitating pathfinding between software
segments, and also improving comprehension. Having these benefits will result in ease
of development and maintainability (Sasidharan 2019).

Different software module clustering methods are proposed and employed before,
such as hierarchical clustering, probabilistic, density-based, constraint-based, subspace,
partitioning relocation, distribution-based, and grid-based clustering (Solorio-Fernández,
Carrasco-Ochoa, and Martínez-Trinidad 2019). Amongst them, distribution-based
(Preheim et al. 2013), hierarchical (Kamis, Chiclana, and Levesley 2018), and density-
based clustering (Campello, Moulavi, and Sander 2013) methods are widely used in the
software development process.

Hierarchical clustering forms a tree of clusters or a cluster hierarchy. Each of the cluster
nodes comprises sub-clusters; fraternal clusters divide the nodes protected by their
parent. This approach allows for discovering data on various levels of granularity
(Berkhin 2006). Another category of clustering method is closely related to statistics, in
particular, to the distribution model. Distribution-based clustering methods define the
clusters as objects belonging to the same distribution. Distribution-based clustering
creates complex models that can find and show correlation and dependence among
attributes. Although these algorithms put an additional burden on the user, they have
attracted software developers’ attention (Ramanathan et al. 2018).

To explain density-based clustering, propose an exposed set in the Euclidean environ-
ment. This set can be separated into a set of components that are connected. To implement
this idea for dividing a finite set of nodes, we require to know what is a boundary,
connectivity, and density (Wieland et al. 2007). A cluster is a set of components densely
connected. As the density increases in a direction, the cluster is also growing in that
direction (Souri et al. 2020). Therefore, density-based clustering can find any shapes.

To the best of our knowledge, there is no comprehensive and detailed review of the
software module clustering approaches. In this paper, a Systematic Literature Review
(SLR) (Souri et al. 2019) is presented for software module clustering approaches. First,
a technical taxonomy is presented to classify the existing software module clustering
methods and algorithms in enterprise systems. The software module clustering methods
are categorised into three main classes including hierarchical, distribution-based, and
density-based clustering methods. The main contributions of the proposed SLR on soft-
ware module clustering approaches are as follows:

2 J. LI AND A. YAMINI

● Presentation of a review and analysis for software module clustering approaches
covering 34 research studies.

● Presentation of a technical taxonomy of software module clustering methods and
applied algorithms.

● Analyzes and discussion on the technical impacts and features of each research
study.

● Presentation of the open issues and challenges on the software module clustering
approaches.

The reason that we relate the importance of this paper in enterprise systems is the fact
that there are some important issues in software modularisation that have a huge impact
on high complex enterprise systems. Solving issues like reducing execution time, and
making cost-efficient modularizations can be helpful in lots of enterprise systems
problems.

The rest of this paper is organised as follows: Section 2 presents the SLR research
finding for present software module clustering studies. Section 3 illustrates a technical
taxonomy for software module clustering approaches and a side-by-side analysis and
summary for each research study based on the presented taxonomy. Section 4 presents
an analytical discussion based on reviewed research studies. Also, some new challenges
and open research directions are shown in this section. Finally, the conclusion and
limitation metrics are illustrated in Section 5.

2. Research planning and methodology

In this section, we offer a research finding method considering Kitchenham et al. (2009) to
introduce SLR on the software modularisation methods and our analytical review based
on it. According to this approach, Figure 1 illustrates three procedures for collecting,
refining, and analytical review. As Figure 1 illustrates, there are three phases in our
research plan, including collection, refinement, and analytical review. Inside the collection
phase, our study objectives using a tested research finding protocol (Souri, Navimipour,

Figure 1. Research selection strategy based on SLR for software module clustering.

ENTERPRISE INFORMATION SYSTEMS 3

and Rahmani 2018). In this convention, the leading keywords will be applied to perform
a search inside scientific databases. These keywords are [12]:

‘Software’ | ‘System’ | ‘Application’ & ‘Module’ | ‘Modularisation’ & ‘Clustering’
The confirmation of the papers that are chosen to our keywords in scientific databases

will be done directly which these databases are publishers such as, IEEE, Springer, Wiley,
Elsevier, ACM. In the next phase which is refinement, the evaluation and comparing of the
selected research studies to the response of analytical questions will be done. In the end,
the analytical review stage, the finishing outcomes will be stated and the final research
studies will be gathered.

As shown in Figure 2, a statistical time scale of software modularisation clustering
papers per publication year is presented. 34 papers were gathered in the final paper
collection.

In the following some analytical questions are provided for answering technical
features of the SLR approach on the software module clustering methods, to evaluate
the review analysis for each paper study:

RQ1: Which techniques and applied algorithms are considered for existing studies?
RQ2: What are the evaluation factors for examining software modularisation models?
RQ3: Which machine learning methods were applied to evaluate software modularisa-

tion models?
RQ4: Which tools and environments are considered in software modularisation

models?

3. Software modularisation models

One of the problematic issues of automatic decomposition of software units into their
modules is software module clustering. It helps to enhance the structure of a software and
improves the readability of software. Software module clustering results in easier naviga-
tion and easier tracking among software components and enhances system understand-
ings. Therefore, a good distribution of the modules simplifies the process of software
development and maintenance. Several studies on software module clustering have been

Figure 2. Publication per year analysis for software module clustering approaches.

4 J. LI AND A. YAMINI

conducted with different goals such as: to analyse large systems, to increase economic
profits, to make development cycles shorter, to study interactions among entities in an
object-oriented system, to enhance the comprehensibility of software module clustering
results; as reviewed in the rest of the current subsection.

Figure 3 presents a taxonomy for categorising existing machine learning-based soft-
ware modularisation models concerning three main classes including hierarchical, dis-
tribution-based, and density-based clustering methods. According to the proposed
taxonomy, the whole software module clustering is categorised into three sections
including hierarchical-based software module, density-based software module, and dis-
tributed-based software module. Also, hierarchical-based software module has over three
clustering method which includes meta-heuristic clustering, classical clustering, and
cooperative clustering. The density-based software module consists of two methods
including fuzzy clustering and meta-heuristic clustering.

3.1. Hierarchical clustering software modularisation

Hierarchical clustering forms a tree of clusters or a cluster hierarchy. Each of the cluster
nodes comprises sub-clusters; fraternal clusters divide the nodes protected by their
parent. This approach allows for discovering data on various levels of granularity (Souri
et al. 2019a; Zhao et al. 2019).

Sun and Ling (2018) proposed a software algorithm that uses contingency selection for
software module clustering. They changed the problem of software module clustering to
graph clustering problem. They solved the software module clustering problem through
SPS which is one of the clustering algorithms of the software module.

On the other hand, Alkhalid, Alshayeb, and Mahmoud (2011) presented a software-
based refactoring through clustering methods. The paper also illustrated two approaches
in the software level. The first one utilises the same number of software in clustering, and
the other one utilises the changeable number of software in clustering. The proposed
algorithm in the first approach was a k-nearest neighbour (KNN). Based on results it
enhances software unity and decreases software pairing. Besides, applied clustering
methods in the second approach are as follows: WPGMA, CLINK, and namely Slink. The

Figure 3. Proposed taxonomy for classifying machine learning-based software modularisation models.

ENTERPRISE INFORMATION SYSTEMS 5

applied tool in this research was Trama which demonstrates various graphical UI (user
interface) to graphically work with the matrices. The main positive point of the study was
presenting new methods that make less the complexity of the computation through
competitive performance. However, the paper did not compare the refactoring by using
the proposed approaches.

However, Anquetil and Lethbridge (2003) proposed three decisions that need to be
made when clustering: the choice of abstract details of the entities to be clustered,
metrics to gauge coupling between the entities, and clustering algorithms. Muhammad,
Maqbool, and Abbasi (2012) presented different methods for the automatic modulation
and architecture recovery of software systems because selecting an appropriate algorithm
is very important and has a significant impact on the quality of the result.

Siddique and Maqbool (2012) presented a technique that increases the comprehensi-
bility of software module clustering results. They used TWS to determine which schemes
in the software domain work well, and the identification of software characteristics

Huang and Liu (2016) proposed an algorithm that modularises the quality of measure
for software module clustering issues, and for evaluating the solutions they designed two
evaluation based on software design requirements. Naseem, Maqbool, and Muhammad
(2013) proposed a method for software module based on the collaboration of more than
one parallel measures. They presented this method for both binary and non-binary
features’ software module clustering strategy.

Also, Zhao and Zou (2011) proposed an algorithm that analyzes dependencies in data
and tasks to extract software modular structures from business processes and group them
into a software component automatically. Mitchell, Traverso, and Mancoridis (2001) dis-
cussed the way of individuating nodes in a computer network to be used as a collection of
connected processing elements for improving the performance of a software engineering
tool which is developed. Naseem, Deris, and Maqbool (2014) explored the idea of
Cooperative Clustering for software module which joins the strengths of likeness and
coldness measures together at the same process. Pavithr and Garg (2011) suggested
a novel objective algorithm that achieves the best answer for the software automatic
clustering issue. The author also proposed Filtered Turbo to find the library modules
which filtered from the useful clusters.

Bishnoi and Singh (2016) presented a multi-objective method for software modularisa-
tion which uses Particle Swarm Optimisation. For analysing the performance of the
algorithm, they have used open-source java software systems

Seo and Huh (2019) have introduced a module clustering approach to create the
structure of the software system in module shape. Their GUI-build module clustering
method can create GUI-made structures and by utilising dynamic software analysis they
were able to recognise software modules that are associated with functionalities of GUI
modules. The GUI-build method is compared to SHA, SSA, and THA approaches in Weka.

Sadat Jalali, Izadkhah, and Lotfi (2019) have proposed a fitness function to do software
modularisation from source code. The multi-objective function’s goal is to modularise
software systems considering features that can be either structural or non-structural. The
evolutionary algorithms are enabled by using the presented objective function. The
outcomes of this study have been examined using various criteria such as Mojo and
MojoFM.

6 J. LI AND A. YAMINI

Kargar, Isazadeh, and Izadkhah (2019) has introduced a unified structural and semantic
concept to enhance the quality of software modularisation. In the paper, dependency
graphs such as Call Dependency Graph (CDG), Semantic Dependency Graph (SDG), and
Nominal Similarity Graph (NDG) are made through source code. Also, a genetic algorithm
is introduced to help in modularising programs that are multilingual. Mozilla Firefox is
used to show experimental outcomes from utilising SDG, NDG, and structural build
graphs.

Imran (2019) discusses the design smells by utilising an Abstract Syntax Tree (AST)
build tool. The tool helps to recognise exact design qualities and makes relationships
among breaches of those along with the existence of design smells. The outcomes of
applying the tool on class files and a big segment of the java project demonstrated that
normally there is a relation between an exact software, quality properties, and the
existence of design smells. Also, some design smells are more common in software
development.

Tabrizi and Izadkhah (2019) have introduced a combination of search-based and
hierarchical algorithm to use the benefits of both algorithms in software modularisation.
The outcomes of testing the algorithm on software systems show that the quality is
enhanced using the following method. Also, using this method’s hierarchical character-
istics understanding software structure is simpler.

Kargar, Isazadeh, and Izadkhah (2020) proposed semantic dependency and nom-
inal similarity graphs that are made through the syntax of programming languages.
Also, a hybrid graph called SNGA is introduced that combines the semantic graph
and nominal similarity graph. The experimental outcomes that come from tests on
Mozilla Firefox, implied that modularity quality is enhanced compared to the seman-
tic graph.

As shown in Table 1, hierarchical-based software module clustering models can be
compared and analysed based on different main ideas, clustering methods, applied
algorithms, simulation environments, and evaluation factors respectively. These factors
are used in data mining and computation techniques. Some of the papers bellow have

Table 1. Comparison of the hierarchical software module clustering models.

Research Main idea
Applied

algorithm
Simulation

environment
Evaluation

factors

Sun and Ling (2018) Software module
based on the complexity of the

structure

SPS GGA,
GNE,
MCA,
ECA, MAEA-SMCPs

Time

Alkhalid, Alshayeb,
and Mahmoud
(2011)

Software-based refactoring
through clustering method

A-KNN Trama Dencity

Anquetil and
Lethbridge (2003)

Representation of heuristic
algorithm

for software
remodularization

Hill-climbing
algorithm

GCC,
Linux and Mosaic

Precision

Muhammad,
Maqbool, and
Abbasi (2012)

Study relationships between
entities in an object-oriented
system

WA, UWA, CL, CB,
WC, BUNCH,
ACDC

DDA (c ++ program),
LIMBO,
Jedit v4.1, Jhotdraw

v5.3 and Jfreechart
v1.0.13

Precision, recall,
time

(Continued)

ENTERPRISE INFORMATION SYSTEMS 7

used fuzzy clustering methods to use this method’s feature that each data point can
belong to more than one cluster. Also, some classical clustering methods have been
considered to recognise groups of observations that have similarities respecting some
number of variables.

Table 1. (Continued).

Research Main idea
Applied

algorithm
Simulation

environment
Evaluation

factors

Siddique and
Maqbool (2012)

Enhancing the comprehensibility
of software module clustering
results

TWS,
LIMBO

C/C++
Systems:
Xfig,
Chocolate Doom,
Mozilla,
Weka,
compost

Accuracy, time

Huang and Liu
(2016)

Similarity-based modularisation
quality measure

HC, GA, MAEA HC
GA
MAEA

Error rate, time

Naseem, Maqbool,
and Muhammad
(2013)

Cooperative clustering for
software modularisation

CCT Jaccard-NM
NFV

Time, number of
clusters

Xulin Zhao and Zou
(2011)

Generating software
Modules automatically

ACDC BPE Accuracy,
precision,
time

B. Mitchell, Traverso,
and Mancoridis
(2001)

Distributing computation of
clustering

SAHC
NAHC
GA

C++ Java
RMI
MDG
Bunch

Accuracy,
precision,
error rate,
time

Naseem, Deris, and
Maqbool (2014)

Cooperative-based clustering
method

CC CA Time

Pavithr and Garg
(2011)

Automatic Clustering of
Software-Intensive Systems

FTMQ MDG
ETMQ
Graphviz

Time

Bishnoi and Singh
(2016)

Modularising software systems
using PSO

- Java
Bunch

Error rate, time

Tabrizi and Izadkhah
(2019)

Software modularisation using
genetic and hierarchical

GA
Single-linkage

Bison
Boxer
Compiler
ISpell
Mini-Tunis

Time

Kargar, Isazadeh,
and Izadkhah
(2019)

Multi-programming language SGNA
Bunch
DAGC
HC
ECA
SGA

Mozilla Firefox 3.7 Precision, recall,
time

Kargar, Isazadeh,
and Izadkhah
(2020)

Improving modularisation quality SDGA
SNDGA

Mozilla Firefox Precision, recall,
time

Imran (2019) Smell Analysis for Java Software - - Accuracy, recall,
time

Sadat Jalali,
Izadkhah, and
Lotfi (2019)

Inheritance dependency-based
software modularisation

GA, Hill climbing Mozilla Firefox Time

Seo and Huh (2019) GUI-based software
modularisation in edge
computing

HCA Java SWT/Swing
Weka

Time

8 J. LI AND A. YAMINI

3.2. Density-based clustering software modularisation

To explain density-based clustering, propose an exposed set in the Euclidean environ-
ment. This set can be separated into a set of components that are connected (Xu and
Chen 2014).

Mitchell and Mancoridis (2003) proposed an evaluation approach based on the search
metaheuristic software module clustering algorithms. They examined the Bunch cause,
specifies subsystem hierarchy by search techniques and that makes useful results for
different systems.

Also, Köhler, Fampa, and Araújo (2012) presented a solution for the software
module clustering problem with programming formulations of mixed-integer linear.
They formulated the SCP as a sum of linear fractional problem, then reformulated
Mixed-Integer Linear Programming (MILP) problems by applied two different linear-
isation procedures. Wan and Wu (2009) proposed the Fuzzy decision and support
vector clustering applied to optimal reliability allocation for a modular software
system. This model boosts economic benefits and applied to the NC system for
reliability distribution. Mitchell and Mancoridis (2006) designed a framework for
maintainers which helps to understand the big and complex software system that
uses search techniques to perform clustering.

Praditwong, Harman, and Yao (2011) proposed a solution including cohesion and
coupling for the software module clustering problem as a multi-search. Certainly, both
of these approaches are better than the single-objective solution and may improve
performance.

While Kumari and Srinivas (2016) answered the question of solving the multi-
objective software module clustering issue using the presented approach. This
issue was researched by two multi-objective approaches to clustering and five
objectives for every one of them. They planned to work on another method on
software module clustering problems. A Kumari, Srinivas, and Gupta (2013) pre-
sented an algorithm to find a solution for software module clustering issues which
is based on a multi-objective genetic algorithm. This approach maintains the
correct stability between exploration and exploitation of the search space due to
the author’s claim.

Amarjeet and Chhabra (2017) presented an algorithm for software module
clustering problems that cover a great number of objective functions and conclu-
sions by using the many-objective algorithm. Mu, Sugumaran, and Wang (2019)
have discussed the maintainability of software architectures and emphasises on
a model to perform an automatic software remodularization on systems. The
hybrid genetic algorithm (HGA) can automatically recognise solutions for high-
quality software modularisation. Along with that, the proposed solution is
enhanced using a customised genetic algorithm (GA). The paper also compares
HGA with hill-climbing algorithm (HCA) and the genetic algorithms having group
number encoding (GNE).

As shown in Table 2, density-based software module clustering models can be com-
pared and analysed based on different main ideas, clustering methods, applied algo-
rithms, simulation environments, and evaluation factors respectively. These factors are
used in data mining and computation techniques.

ENTERPRISE INFORMATION SYSTEMS 9

3.3. Distribution-based clustering software modularisation

Distribution-based clustering methods define the clusters as objects belonging to the
same distribution. Distribution-based clustering creates complex models that can find and
show correlation and dependence among attributes.

Parsa and Bushehrian (2004) presented the DAGC software environment that helps to
automatic modularisation of software systems in research works by genetic clustering
algorithms designing and development. Due to the distinctive features of DAGC,
a clustering algorithm was evolved for the Bunch genetic clustering algorithm compo-
nents by trying different schemes. Prajapati and Chhabra (2017) presented the applic-
ability and usefulness of particle swarm optimisation (PSO) based module clustering
(PSOMC) to solve the software module clustering problems (SMCPs). They redesigned
the particle situation and rapidity of the PSO algorithm according to the SMCPs and
redefined particle update procedure.

Monçores, Alvim, and Barros (2018) evaluated a method to solve the module clustering
issues. Their study evaluated some alternatives, strategies, and distinct values for
a different part of the method.

Amarjeet and Chhabra (2018) presented a fuzzy-Pareto (FP) method for resolving many
objective software improvement issues which can make a qualified software module
clustering result related to other algorithms. In this research, the evaluation factors
have been introduced into the ABC to help the strategy for leading to a premiere search
area. The outcomes represented the ability of the FP strategy for capturing an improved
module clustering solution.

Huang, Liu, and Yao (2016) proposed an algorithm for solving the software module
clustering problems. The trials showed a good presentation and the contrast presented
that MAEA-SMCPs outperform two existing single-objective algorithms and two existing
multi-objective algorithms in terms of MQ. Varghese, Raimond, and Lovesum (2019)

Table 2. Comparison of the density-based software module clustering models.

Research Main idea Applied algorithm
Simulation

environment
Evaluation

factors

Mitchell and Mancoridis
(2003)

Search landscape using a bunch Search
algorithms

Bunch,
Kerberos5,

Time

Köhler, Fampa, and
Araújo (2012)

Linear programming-based
modularisation

Linear
Programming

C++
CPLEX

Time

Wan and Wu (2009) Increasing economic profit
development cycles

SVM – Time

Mitchell and Mancoridis
(2006)

Automatic modularisation of
software systems

Hill-climbing MDG
(C++ program)

Recall, time

Praditwong, Harman, and
Yao (2011)

Heuristic-based software module
clustering

MQ
(hill-climbing)

ECA, MDG Time

Kumari and Srinivas
(2016)

Hyper-heuristic for multi-objective
module

MHypEA
MCA
ECA

MDG Accuracy,
time

Kumari, Srinivas, and
Gupta (2013)

Hyper-heuristic for multi-objective
module

MCA
Genetic algorithm

Bunch
Graph drawing

tool

Time

Amarjeet and Chhabra
(2017)

Artificial bee colony algorithm for
large-scale modules

MaABC MCA
ECA

Error rate,
time

Mu, Sugumaran, and
Wang (2019)

A hybrid genetic algorithm for re-
modularisation

GA - Time

10 J. LI AND A. YAMINI

presented an approach to re-modularise software systems automatically by utilising an
expanded Ant Colony Optimisation (ACO) algorithm. This is because maintaining the high
cohesion and low coupling is important to have adhered to the basic theories of software
modularisation. Authors evaluate their method by different software systems and the
outcomes demonstrate the advantage of it over methods such as I-GAs, Bunch-GA, and
Bunch-HC.

Zamli et al. (2019) demonstrated the productivity of the Adaptive Fuzzy Teaching
Learning Based Optimisation (ATLBO) algorithm compared to Fuzzy Adaptive Teaching
Learning Based Optimisation (FATLBO) algorithm in software module clustering related
applications. Since Teaching Learning Based Optimisation (TLBO) algorithm doesn’t have
the best performance on controlling exploration, exploration, The ATLBO was able to be
even more efficient from the TLBO which is the original idea in making the best MQ unit.

According to Table 3, distribution-based software module clustering models can be
compared and analysed based on different main ideas, clustering methods, applied
algorithms, simulation environments, and evaluation factors respectively. These factors
are used in data mining and computation techniques.

4. Discussion

The section will discuss existing software modularisation methods comparatively and
technically. As it is stated by analytical questions in segment 3, technical and statistical
answers are responded as follows:

RQ1: Which techniques and applied algorithms are considered for existing studies?
As illustrated in Figure 4, the hierarchical clustering strategies are utilised more than

density-based and distribution-based strategies. Since those are some of the powers of
hierarchical clustering, ease of using, understanding, and clear mathematical calculations
are possible. The dendrogram tree for software module clustering is the leading output of
the hierarchical clustering approach. In the writing of this paper, it is illustrated that
software architecture recovery, software module, and software metric approaches, mostly
use a hierarchical model, since the structure of the data is hierarchical it should be utilised

Table 3. Comparison of the distribution-based software module clustering models.

Research Main idea Applied algorithm
Simulation

environment
Evaluation

factors

Parsa and Bushehrian
(2004)

Facilitation research work of genetic
clustering algorithms

Genetic algorithm DAGC Time, number
of clusters

Prajapati and Chhabra
(2017)

Intercluster dependency-based
modularisation

PSO Java Accuracy, recall

Monçores, Alvim, and
Barros (2018)

Large neighbourhood search applied
to the

LNS SMC JodaMoney Error rate, time

Amarjeet and Chhabra
(2018)

Using FP-ABC
Algorithm for Objective Software

Module Clustering

F-ABC - Error rate, time

Huang, Liu, and Yao
(2016)

Multi-agent evolutionary algorithm MAEA Bunch
MQ

Error rate,, time

Varghese, Raimond,
and Lovesum (2019)

Automatic re-modularisation of
software using colony optimisation

ACO Bunch Time

Zamli et al. (2019) Software module clustering base on
fuzzy adaptive learning

Fuzzy teaching-
learning
algorithm

- Time

ENTERPRISE INFORMATION SYSTEMS 11

for testing approaches. Generally, density-based and distribution-based are more suitable
alternatives because the hierarchical approach should be utilised for non-numerical and
data that is not independent.

Figure 5 shows that various algorithms have been presented in the research studies
which we have seen algorithms by the percentage that they have been utilised for the case
study. Most of these algorithms that have been utilised were clustering algorithms such as

Figure 4. Percentage of a clustering method for software module clustering approaches in the
literature.

Figure 5. Comparison of applied algorithms in the software modularisation models.

12 J. LI AND A. YAMINI

K-mean and Fuzzy. When we have great variables K-means show that they can produce
tight clusters along with their faster computation compared to others. The fuzzy algorithm
has its best used as a software module clustering algorithm since it is simple and flexible
and we consider a degree of truth instead of usual true or false Boolean logic. Fuzzy can
solve problems that have minimum data and it can handle them at a low cost. On the other
hand, these algorithms might be utilised less than algorithms such as TB, GN, SAHC, NA, LA,
ABC, HCA which are illustrated in Table 2, but they can be optimised to be used more
frequently in the future. You can see a brief description of these algorithms in Table 4.

RQ2: What are the evaluation factors for examining software modularisation models?
Figure 6 shows that in clustering methods factors such as accuracy, precision, recall,

error rate, and response time are being utilised to have an accurate evaluation and
comparison. These evaluations implied that response time and accuracy were the most
important quality factors and F-score had the lowest contribution in these evaluations
compared to the other two factors. At large, six main factors are presented here, these six
factors are used greatly in the studied papers since they can be great at reviewing
different aspects of quality in software modularisation models, but to have more precise
evaluation other factors can be applied as well such as privacy and performance.

RQ3: Which machine learning methods were applied to evaluate software modularisa-
tion models?

Based on the usage of the SLR method on the software module clustering papers in
Figure 7, IEEE has the biggest number of articles investigation, since 12 papers from 34
studies have been published by IEEE. Figures 8 and 9 demonstrates the distribution of
papers among authors and their countries.

Table 4. List of applied algorithms with full name.
Abbreviation Full name

KM K-mean
FC Fuzzy Clustering
ACDC Algorithm for Comprehension Driven Clustering
EM Expectation Maximization
GA Genetic Algorithm
GGA Grouping Genetic Algorithm
SVM Support Vector Machine
HC Hill Climbing
BA Bunch Algorithm
CL Complete Linkage
SL Single Linkage
A-KNN Adaptive K-nearest Neighbour
CC Cooperative Clustering
NAHC Next Ascent Hill Climbing Algorithm
SNDGA Sequential Nominal Dynamic Genetic Algorithm
ABC Artificial Bee Colony
ATLBO Adaptive Fuzzy Teaching Learning Based Optimisation
SPS Simple Filtering Algorithm
WC Weighted Clustering Algorithm
CB Cluster-Based Algorithm
WA Weighted Average Algorithm
UWA Unweighted Average Algorithm
TWS Term Weighting Schemes
MAEA Multi-Agent Evolutionary Algorithm
CCT Cooperative Clustering Technique
SAHC Steepest Ascent Hill Climbing
FTMQ Filtered Turbo MQ

ENTERPRISE INFORMATION SYSTEMS 13

Figure 10 points out that, Pakistan has the first rank among countries of authors
contributing in these 34 papers, and authors Onaiza Maqbool published 4 papers
among these researchers. According to the current research papers, Onaiza Maqbool
emphasises on subjects including software modularisation clustering, software

Figure 6. Comparison of quality factors in the software modularisation models.

Figure 7. A number of publishers in existing papers of the software modularisation models.

Figure 8. A number of authors in existing papers of the software modularisation models.

14 J. LI AND A. YAMINI

architecture recovery, and software metric measurement using cluster labelling,
meta-heuristic analysis on graph dependencies and multiple combined clustering
algorithms. Software module clustering, software architecture recovery, and software
metric measurement approaches.

Figure 9 shows the number of articles of software module clustering in each country.
Based on the nationality of leading authors in this study, India, China, and Iran have more
research activity in these specific topics.

Considering Table 5, information from research papers and publishers that focus on
software module clustering approaches have been extracted. Table 5 also, is useful to
understand the impact factor of related journals. Table 5 presents some of the contributed
journals in the published papers that have been studied in this paper. The table also
compares the impact factor of each journal along with their quartile.

Figure 9. A number of countries in existing papers of the software modularisation models.

Figure 10. Comparison of environments, programming languages, and tools in the software module
clustering approaches.

ENTERPRISE INFORMATION SYSTEMS 15

RQ4: Which tools and environments are considered in software modularisation models?
Figure 10 shows that in the papers listed in this paper, various tools, programming

languages, and environments were utilised for software module clustering approaches. In
Figure 10, a comparison between the simulation environments of these papers is illustrated.
Programming languages including C++, Java, and some others were in the related researches.

According to Figure 10, some various languages and environments have been used by
each paper. As illustrated, Bunch with 21% has a big share of usage in studied papers
along with Java with 13% of usage.

4.1. Open issues and new challenges

According to the above analytical results, there are some open issues an new challenges
in the software modularisation clustering which have not been analysed comprehensively
to cover the way for upcoming studies. We explain some open issues for software
modularisation clustering models briefly as follows:

In the software module clustering, finding an optimal dependency graph between
modules is an open issue to decrease inter-connections between independent modules
and maximise intra-connections between dependent models.

● Finding the optimal similarity matrix for software modularisation is another open
issue to minimise the complexity and size of the software system for software
module clustering problems. To solve these problems, several improved binary
similarity measures have been introduced (Shen et al. 2016; Zhang, Ding, and
Zhang 2020).

Table 5. Top Journals and publishers in existing papers of the software module clustering approach in
2019.

Journal Publisher Impact factor Quartile

Proceeding of IEEE IEEE 10.25 Q1
IEEE Transactions On Cybernetics IEEE 10.38 Q1
IEEE Transactions On Dependable And Secure Computing IEEE 6.8 Q1
Information Sciences Elsevier 5.52 Q1
Applied Soft Computing Elsevier 4.87 Q1
Soft Computing Springer 4.87 Q2
Empirical software engineering Springer 4.45 Q2
IEEE access IEEE 4.09 Q1
IEEE Transactions On Software Engineering IEEE 3.33 Q2
Computers & Operations Research Elsevier 3.00 Q1
Information And Software Technology Elsevier 2.92 Q2
The Journal Of Systems And Software Elsevier 2.55 Q1
Automated software engineering Springer 2.20 Q3
Cluster computing Springer 1.85 Q2
Computer Languages, Systems & Structure Elsevier 1.84 Q2
ACM Transactions on Computer Systems ACM 1.76 Q1
ACM Transactions on Information Systems ACM 1.76 Q1
Arabian Journal for Science and Engineering Springer 1.51 Q3
Journal of Software evaluation and process Wiley 1.30 Q2
Electronic Notes In Theoretical Computer Science Elsevier 1.2 Q2
IET software IET 1.07 Q3
Computer IEEE 0.98 Q1
The computer journal Oxford 0.98 Q3
ACM Transactions on Computer-Human Interaction ACM 0.97 Q3

16 J. LI AND A. YAMINI

● Detecting the cohesion metric using meta-heuristic algorithms is one of the main
challenges to evaluate the grade of intra-dependability between software modules
(Wang and Chen 2020; Zhao et al. 2014).

● Formal analysis of software module clustering can be useful to evaluate the correct-
ness of the inter-dependability and intra-dependability between modules (Souri
et al. 2019b). Also, nature-inspired computing can be applied to find the optimal
number of dependencies in enterprise-based software modules (Wang et al. 2017).

● Verification of cohesion and Coupling metrics is very essential to support reachability
conditions for monitoring level of inter-dependability and intra-dependability
between modules (Rodriguez, Piattini, and Ebert 2019).

● Reducing execution time for software modularisation is an important challenge for
highly complex enterprise systems with million lines of codes using meta-heuristic
algorithms (Y. Xu et al. 2019).

● Cost-efficient modularisation can be enhanced on dynamic decision making for
enterprise systems. Evolutionary algorithms and fuzzy logic can be applied to
increase the efficiency of dynamic decision making for software modularisation
(Chen et al. 2020; Kataev et al. 2020).

5. Conclusion and future work

Clustering technics in software engineering can be very effective in decreasing develop-
ment stage errors and increases the performance, effectively managing and can be
utilised for other development schemes as well. Software modularisation clustering is
the act of categorising software modules and application phases into a set of batches. In
the development stages of a software modularisation, clustering can provide a notable
effect on managing, evaluating, and monitoring mechanisms.

Selecting the correct method for clustering is an important and challenging phase in
software modularisation. The parameters that are used in software module clustering can
be often in contrast with each other and this has a negative effect on other parameters. In
this paper, we reviewed systematically over 34 software module clustering approaches
from 2001 to 2020 that had an analytical comparison.

From the review papers, we had a very high rate of relevant publishes from 2001 to
2020. The most published papers belong to IEEE with 12 of published papers. After IEEE,
Springer and Elsevier are next publishers with 11 and 5 papers.

The approaches that are chosen have been compared by some factors like accuracy,
precision, error rate, recall, F-Score. Also, considering these cases, a comparative analysis was
performed on clustering algorithms. The outcomes implied that papers tried to enhance
time, accuracy. Also, results illustrated that topics such as user preferences, privacy, and
security issues were not considered in many of the reviewed papers. Research on different
clustering techniques in software engineering will help to create new clustering approaches
to decrease errors and enhance usability along with management. Also, by comparing each
software module clustering paper considering their country of origin, papers from India
along with China had the most of the contribution in our reviewed papers.

There are also some limitations in the context of this review. First of all, the review has
been performed based on some keywords in our research. These keywords include
“software module clustering, application clustering, and software cluster algorithm.

ENTERPRISE INFORMATION SYSTEMS 17

Secondly, this study only covers English papers, and Non-English papers are not covered.
We also didn’t cover chapter books, thesis, and non-index journals in our paper’s evalua-
tion. We assume that software computing approaches in computer engineering have
been discussed in different languages as well.

For future work of this study, many directions can be considered for future studies. One
direction is modularisation-based design for innovative product-related industrial service.
Also, a review of the benefits of software modularisation for small and medium-sized
enterprises would be a good direction.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

‘Innovation Research on Cross-border E-commerce Shopping Guide Platform Based on Big Data and
AI Technology’, Funded by Ministry of Education Humanities and Social Sciences Research and
Planning Fund (18YJAZH042); Key Research Platform Project of Guangdong Education Department
(2017GWTSCX064); The 13th Five-Year Plan Project of Philosophy and Social Science Development
in Guangzhou (2018GZGJ208).

ORCID

Jiahua Li http://orcid.org/0000-0002-0222-0619
Ali Yamini http://orcid.org/0000-0003-0643-4048

References

Alkhalid, A., M. Alshayeb, and S. A. Mahmoud. 2011. “Software Refactoring at the Package Level
Using Clustering Techniques.” IET Software 5 (3): 274. doi:10.1049/iet-sen.2010.0070.

Amarjeet, and J. K. Chhabra. 2017. “Many-objective Artificial Bee Colony Algorithm for Large-scale
Software Module Clustering Problem.” Soft Computing 22 (19): 6341–6361. doi:10.1007/s00500-
017-2687-3.

Amarjeet, and J. K. Chhabra. 2018. “FP-ABC: Fuzzy-Pareto Dominance Driven Artificial Bee Colony
Algorithm for Many-objective Software Module Clustering.” Computer Languages, Systems &
Structures 51: 1–21. doi:10.1016/j.cl.2017.08.001.

Anquetil, N., and T. Lethbridge. 2003. “Comparative Study of Clustering Algorithms and Abstract
Representations for Software Remodularisation.” IEE Proceedings-Software 150 (3): 185–201.
doi:10.1049/ip-sen:20030581.

Berkhin, P. 2006. “A Survey of Clustering Data Mining Techniques.” In Grouping Multidimensional
Data: Recent Advances in Clustering, edited by J. Kogan, C. Nicholas, and M. Teboulle, 25–71.
Berlin, Heidelberg: Springer Berlin Heidelberg.

Bishnoi, M., and P. Singh 2016. “Modularizing Software Systems Using PSO Optimized Hierarchical
Clustering.” Paper presented at the 2016 International Conference on Computational Techniques
in Information and Communication Technologies (ICCTICT), United states.

Campello, R. J., D. Moulavi, and J. Sander 2013. “Density-based Clustering Based on Hierarchical
Density Estimates.” Paper presented at the Pacific-Asia conference on knowledge discovery and
data mining, Australia.

18 J. LI AND A. YAMINI

https://doi.org/10.1049/iet-sen.2010.0070
https://doi.org/10.1007/s00500-017-2687-3
https://doi.org/10.1007/s00500-017-2687-3
https://doi.org/10.1016/j.cl.2017.08.001
https://doi.org/10.1049/ip-sen:20030581

Chen, H., Q. Zhang, J. Luo, Y. Xu, and X. Zhang. 2020. “An Enhanced Bacterial Foraging Optimization
and Its Application for Training Kernel Extreme Learning Machine.” Applied Soft Computing 86:
105884. doi:10.1016/j.asoc.2019.105884.

Czekster, R. M., T. Webber, A. H. Jandrey, and C. A. M. Marcon. 2019. “Selection of Enterprise Resource
Planning Software Using Analytic Hierarchy Process.” Enterprise Information Systems 13 (6):
895–915. doi:10.1080/17517575.2019.1606285.

Huang, J., and J. Liu. 2016. “A Similarity-based Modularization Quality Measure for Software Module
Clustering Problems.” Information Sciences 342: 96–110. doi:10.1016/j.ins.2016.01.030.

Huang, J., J. Liu, and X. Yao. 2016. “A Multi-agent Evolutionary Algorithm for Software Module
Clustering Problems.” Soft Computing 21 (12): 3415–3428. doi:10.1007/s00500-015-2018-5.

Imran, A. 2019. “Design Smell Detection and Analysis for Open Source Java Software.” Paper
presented at the 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME), 29 Sept.-4 Oct, USA.

Kamis, N. H., F. Chiclana, and J. Levesley. 2018. “Geo-uninorm Consistency Control Module for
Preference Similarity Network Hierarchical Clustering Based Consensus Model.” Knowledge-
Based Systems 162: 103–114. doi:10.1016/j.knosys.2018.05.039.

Kargar, M., A. Isazadeh, and H. Izadkhah. 2019. “Multi-programming Language Software Systems
Modularization.” Computers & Electrical Engineering 80: 106500. doi:10.1016/j.compeleceng.
2019.106500.

Kargar, M., A. Isazadeh, and H. Izadkhah. 2020. “Improving the Modularization Quality of
Heterogeneous Multi-programming Software Systems by Unifying Structural and Semantic
Concepts.” The Journal of Supercomputing 76 (1): 87–121. doi:10.1007/s11227-019-02995-3.

Kataev, M., L. Bulysheva, L. Xu, Y. Ekhlakov, N. Permyakova, and V. Jovanovic. 2020. “Fuzzy Model
Estimation of the Risk Factors Impact on the Target of Promotion of the Software Product.” In
Enterprise Information Systems, 1–15. Taylor and Francis.

Kitchenham, B., O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman. 2009. “Systematic
Literature Reviews in Software Engineering–a Systematic Literature Review.” Information and
Software Technology 51 (1): 7–15. doi:10.1016/j.infsof.2008.09.009.

Köhler, V., M. Fampa, and O. Araújo. 2012. “Mixed-Integer Linear Programming Formulations for the
Software Clustering Problem.” Computational Optimization and Applications 55 (1): 113–135.
doi:10.1007/s10589-012-9512-9.

Kumari, A. C., and K. Srinivas. 2016. “Hyper-heuristic Approach for Multi-objective Software Module
Clustering.” Journal of Systems and Software 117: 384–401. doi:10.1016/j.jss.2016.04.007.

Kumari, A. C., K. Srinivas, and M. Gupta 2013. “Software Module Clustering Using a Hyper-heuristic
Based Multi-objective Genetic Algorithm.” Paper presented at the 2013 3rd IEEE International
Advance Computing Conference (IACC), India.

Mitchell, B., M. Traverso, and S. Mancoridis 2001. “An Architecture for Distributing the Computation
of Software Clustering Algorithms.” Paper presented at the Proceedings Working IEEE/IFIP
Conference on Software Architecture, Netherlands.

Mitchell, B. S., and S. Mancoridis 2003. “Modeling the Search Landscape of Metaheuristic Software
Clustering Algorithms.” Paper presented at the Genetic and Evolutionary Computation
Conference, USA.

Mitchell, B. S., and S. Mancoridis. 2006. “On the Automatic Modularization of Software Systems Using
the Bunch Tool.” IEEE Transactions on Software Engineering 32 (3): 193–208. doi:10.1109/TSE.2006.31.

Monçores, M. C., A. C. F. Alvim, and M. O. Barros. 2018. “Large Neighborhood Search Applied to the
Software Module Clustering Problem.” Computers & Operations Research 91: 92–111. doi:10.1016/
j.cor.2017.10.004.

Mu, L., V. Sugumaran, and F. Wang. 2019. “A Hybrid Genetic Algorithm for Software Architecture
Re-Modularization.” Information Systems Frontiers. doi:10.1007/s10796-019-09906-0.

Muhammad, S., O. Maqbool, and A. Q. Abbasi. 2012. “Evaluating Relationship Categories for
Clustering Object-oriented Software Systems.” IET Software 6 (3). doi:10.1049/iet-sen.2011.0061.

Naseem, R., M. B. M. Deris, and O. Maqbool 2014. “Software Modularization Using Combination of
Multiple Clustering.” Paper presented at the 17th IEEE International Multi Topic Conference
2014, Pakistan.

ENTERPRISE INFORMATION SYSTEMS 19

https://doi.org/10.1016/j.asoc.2019.105884
https://doi.org/10.1080/17517575.2019.1606285
https://doi.org/10.1016/j.ins.2016.01.030
https://doi.org/10.1007/s00500-015-2018-5
https://doi.org/10.1016/j.knosys.2018.05.039
https://doi.org/10.1016/j.compeleceng.2019.106500
https://doi.org/10.1016/j.compeleceng.2019.106500
https://doi.org/10.1007/s11227-019-02995-3
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1007/s10589-012-9512-9
https://doi.org/10.1016/j.jss.2016.04.007
https://doi.org/10.1109/TSE.2006.31
https://doi.org/10.1016/j.cor.2017.10.004
https://doi.org/10.1016/j.cor.2017.10.004
https://doi.org/10.1007/s10796-019-09906-0
https://doi.org/10.1049/iet-sen.2011.0061

Naseem, R., O. Maqbool, and S. Muhammad. 2013. “Cooperative Clustering for Software
Modularization.” Journal of Systems and Software 86 (8): 2045–2062. doi:10.1016/j.jss.2013.03.080.

Parsa, S., and O. Bushehrian 2004. “A Framework to Investigate and Evaluate Genetic Clustering
Algorithms for Automatic Modularization of Software Systems.” Paper presented at the
International conference on computational science, Poland.

Pavithr, R. S., and A. Garg 2011. “ETMQ: A Novel Objective function—Automatic Clustering of
Software Intensive Systems.” Paper presented at the 2011 Annual IEEE India Conference, India.

Praditwong, K., M. Harman, and X. Yao. 2011. “Software Module Clustering as a Multi-Objective
Search Problem.” IEEE Transactions on Software Engineering 37 (2): 264–282. doi:10.1109/
tse.2010.26.

Prajapati, A., and J. K. Chhabra. 2017. “A Particle Swarm Optimization-Based Heuristic for Software
Module Clustering Problem.” Arabian Journal for Science and Engineering 43 (12): 7083–7094.
doi:10.1007/s13369-017-2989-x.

Preheim, S. P., A. R. Perrotta, A. M. Martin-Platero, A. Gupta, and E. J. Alm. 2013. “Distribution-based
Clustering: Using Ecology to Refine the Operational Taxonomic Unit.” Applied and Environmental
Microbiology 79 (21): 6593–6603. doi:10.1128/AEM.00342-13.

Ramanathan, L., G. Parthasarathy, K. Vijayakumar, L. Lakshmanan, and S. Ramani. 2018. “Cluster-
based Distributed Architecture for Prediction of Student’s Performance in Higher Education.”
Cluster Computing. doi:10.1007/s10586-017-1624-7.

Rathore, S. S., and S. Kumar. 2019. “A Study on Software Fault Prediction Techniques.” Artificial
Intelligence Review 51 (2): 255–327. doi:10.1007/s10462-017-9563-5.

Rodriguez, M., M. Piattini, and C. Ebert. 2019. “Software Verification and Validation Technologies and
Tools.” IEEE Software 36 (2): 13–24. doi:10.1109/MS.2018.2883354.

Sadat Jalali, N., H. Izadkhah, and S. Lotfi. 2019. “Multi-objective Search-based Software
Modularization: Structural and Non-structural Features.” Soft Computing 23 (21): 11141–11165.
doi:10.1007/s00500-018-3666-z.

Sasidharan, S. 2019. “Reconceptualizing Knowledge Networks for Enterprise Systems
Implementation: Incorporating Domain Expertise of Knowledge Sources and Knowledge Flow
Intensity.” Information & Management 56 (3): 364–376. doi:10.1016/j.im.2018.07.010.

Seo, Y.-S., and J.-H. Huh. 2019. “GUI-based Software Modularization through Module Clustering in
Edge Computing Based IoT Environments.” Journal of Ambient Intelligence and Humanized
Computing. doi:10.1007/s12652-019-01455-3.

Shen, L., H. Chen, Z. Yu, W. Kang, B. Zhang, H. Li, D. Liu, and D. Liu. 2016. “Evolving Support Vector
Machines Using Fruit Fly Optimization for Medical Data Classification.” Knowledge-Based Systems
96: 61–75. doi:10.1016/j.knosys.2016.01.002.

Siddique, F., and O. Maqbool. 2012. “Enhancing Comprehensibility of Software Clustering Results.”
IET Software 6 (4): 283. doi:10.1049/iet-sen.2012.0027.

Solorio-Fernández, S., J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad. 2019. “A Review of Unsupervised
Feature Selection Methods.” Artificial Intelligence Review. doi:10.1007/s10462-019-09682-y.

Souri, A., A. Hussien, M. Hoseyninezhad, and M. Norouzi. 2019. “A Systematic Review of IoT
Communication Strategies for an Efficient Smart Environment.” In Transactions on Emerging
Telecommunications Technologies, e3736. Wiley.

Souri, A., A. S. Mohammed, M. Y. Potrus, M. H. Malik, F. Safara, and M. Hosseinzadeh. 2020. “Formal
Verification of a Hybrid Machine Learning-based Fault Prediction Model in Internet of Things
Applications.” IEEE Access 8: 23863–23874. doi:10.1109/ACCESS.2020.2967629.

Souri, A., N. J. Navimipour, and A. M. Rahmani. 2018. “Formal Verification Approaches and Standards
in the Cloud Computing: A Comprehensive and Systematic Review.” Computer Standards &
Interfaces 58: 1–22. doi:10.1016/j.csi.2017.11.007.

Souri, A., A. M. Rahmani, N. J. Navimipour, and R. Rezaei. 2019a. “Formal Modeling and Verification of
a Service Composition Approach in the Social Customer Relationship Management System.”
Information Technology & People 32: 1591–1607. doi:10.1108/ITP-02-2018-0109.

Souri, A., A. M. Rahmani, N. J. Navimipour, and R. Rezaei. 2019b. “A Symbolic Model Checking
Approach in Formal Verification of Distributed Systems.” Human-centric Computing and
Information Sciences 9 (1): 4. doi:10.1186/s13673-019-0165-x.

20 J. LI AND A. YAMINI

https://doi.org/10.1016/j.jss.2013.03.080
https://doi.org/10.1109/tse.2010.26
https://doi.org/10.1109/tse.2010.26
https://doi.org/10.1007/s13369-017-2989-x
https://doi.org/10.1128/AEM.00342-13
https://doi.org/10.1007/s10586-017-1624-7
https://doi.org/10.1007/s10462-017-9563-5
https://doi.org/10.1109/MS.2018.2883354
https://doi.org/10.1007/s00500-018-3666-z
https://doi.org/10.1016/j.im.2018.07.010
https://doi.org/10.1007/s12652-019-01455-3
https://doi.org/10.1016/j.knosys.2016.01.002
https://doi.org/10.1049/iet-sen.2012.0027
https://doi.org/10.1007/s10462-019-09682-y
https://doi.org/10.1109/ACCESS.2020.2967629
https://doi.org/10.1016/j.csi.2017.11.007
https://doi.org/10.1108/ITP-02-2018-0109
https://doi.org/10.1186/s13673-019-0165-x

Spijkman, T., S. Brinkkemper, F. Dalpiaz, A.-F. Hemmer, and R. van de Bospoort 2019. “Specification of
Requirements and Software Architecture for the Customisation of Enterprise Software: A
Multi-case Study Based on the RE4SA Model.” Paper presented at the 2019 IEEE 27th
International Requirements Engineering Conference Workshops (REW), South Korea.

Sun, J., and B. Ling. 2018. “Software Module Clustering Algorithm Using Probability Selection.”
Wuhan University Journal of Natural Sciences 23 (2): 93–102. doi:10.1007/s11859-018-1299-9.

Tabrizi, A. H. F., and H. Izadkhah 2019. “Software Modularization by Combining Genetic and
Hierarchical Algorithms.” Paper presented at the 2019 5th Conference on Knowledge Based
Engineering and Innovation (KBEI), 28 Feb.-1 March, Iran.

Varghese, R., B. G. K. Raimond, and J. Lovesum. 2019. “A Novel Approach for Automatic
Remodularization of Software Systems Using Extended Ant Colony Optimization Algorithm.”
Information and Software Technology 114: 107–120. doi:10.1016/j.infsof.2019.06.002.

Venkatesan, D., and S. Sridhar. 2019. “A Rationale for the Choice of Enterprise Architecture Method
and Software Technology in A Software Driven Enterprise.” International Journal of Business
Information Systems 32 (3): 272–311. doi:10.1504/IJBIS.2019.103080.

Wan, Y., and C. Wu 2009. “Optimal Reliability Allocation for Modular Software Systems Basis on
Support Vector Clustering and Fuzzy Decision.” Paper presented at the 2009 International
Conference on Artificial Intelligence and Computational Intelligence, China.

Wang, M., and H. Chen. 2020. “Chaotic Multi-swarm Whale Optimizer Boosted Support Vector
Machine for Medical Diagnosis.” Applied Soft Computing 88: 105946. doi:10.1016/j.
asoc.2019.105946.

Wang, M., H. Chen, B. Yang, X. Zhao, L. Hu, Z. Cai, C. Tong, and C. Tong. 2017. “Toward an Optimal Kernel
Extreme Learning Machine Using a Chaotic Moth-flame Optimization Strategy with Applications in
Medical Diagnoses.” Neurocomputing 267: 69–84. doi:10.1016/j.neucom.2017.04.060.

Wieland, S. C., J. S. Brownstein, B. Berger, and K. D. Mandl. 2007. “Density-equalizing Euclidean
Minimum Spanning Trees for the Detection of All Disease Cluster Shapes.” Proceedings of the
National Academy of Sciences 104 (22): 9404–9409. doi:10.1073/pnas.0609457104.

Xie, T., S. Thummalapenta, D. Lo, and C. Liu. 2009. “Data Mining for Software Engineering.” Computer
42 (8): 55–62. doi:10.1109/MC.2009.256.

Xu, X., and H.-L. Chen. 2014. “Adaptive Computational Chemotaxis Based on Field in Bacterial
Foraging Optimization.” Soft Computing 18 (4): 797–807. doi:10.1007/s00500-013-1089-4.

Xu, Y., H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang. 2019. “Enhanced Moth-flame Optimizer with
Mutation Strategy for Global Optimization.” Information Sciences 492: 181–203. doi:10.1016/j.
ins.2019.04.022.

Zamli, K. Z., F. Din, N. Ramli, and B. S. Ahmed. 2019. Software Module Clustering Based on the Fuzzy
Adaptive Teaching Learning Based Optimization Algorithm Intelligent and Interactive
Computing. In 2nd International Conference on Intelligent and Interactive Computing 2018 (IIC
2018), Aug 8, 2018 - Aug 9, 2018, Melaka, Malaysia, 167–177.

Zhang, F., H. Ding, and N. Zhang. 2020. “Productive Service Demands Modularization for CNC
Machine Tools Based on the Improved AP Clustering Algorithm.” Neural Computing &
Applications 32 (6): 1567–1579. doi:10.1007/s00521-019-04173-1.

Zhao, X., D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen. 2014. “Feature Selection Based on Improved Ant
Colony Optimization for Online Detection of Foreign Fiber in Cotton.” Applied Soft Computing 24:
585–596. doi:10.1016/j.asoc.2014.07.024.

Zhao, X., X. Zhang, Z. Cai, X. Tian, X. Wang, Y. Huang, L. Hu, and L. Hu. 2019. “Chaos Enhanced Grey
Wolf Optimization Wrapped ELM for Diagnosis of Paraquat-poisoned Patients.” Computational
Biology and Chemistry 78: 481–490. doi:10.1016/j.compbiolchem.2018.11.017.

Zhao, X., and Y. Zou. 2011. “A Business Process-driven Approach for Generating Software Modules.”
Software: Practice & Experience. doi:10.1002/spe.1068.

ENTERPRISE INFORMATION SYSTEMS 21

https://doi.org/10.1007/s11859-018-1299-9
https://doi.org/10.1016/j.infsof.2019.06.002
https://doi.org/10.1504/IJBIS.2019.103080
https://doi.org/10.1016/j.asoc.2019.105946
https://doi.org/10.1016/j.asoc.2019.105946
https://doi.org/10.1016/j.neucom.2017.04.060
https://doi.org/10.1073/pnas.0609457104
https://doi.org/10.1109/MC.2009.256
https://doi.org/10.1007/s00500-013-1089-4
https://doi.org/10.1016/j.ins.2019.04.022
https://doi.org/10.1016/j.ins.2019.04.022
https://doi.org/10.1007/s00521-019-04173-1
https://doi.org/10.1016/j.asoc.2014.07.024
https://doi.org/10.1016/j.compbiolchem.2018.11.017
https://doi.org/10.1002/spe.1068

	Abstract
	1. Introduction
	2. Research planning and methodology
	3. Software modularisation models
	3.1. Hierarchical clustering software modularisation
	3.2. Density-based clustering software modularisation
	3.3. Distribution-based clustering software modularisation

	4. Discussion
	4.1. Open issues and new challenges

	5. Conclusion and future work
	Disclosure statement
	Funding
	ORCID
	References

